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Some equalities in Athey and Imbens (2016) are challenging to understand at a single glance. In this

guide, I add some comments for certain equations and properties to ease the comprehension.
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1 Honest Splitting

1.1 Equation HIPA-1

By definition,
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since the prediction f is made independently of the test set and £ is an unbiased estimator of u.
For the same reason(Eg[fi(xz; S, I1)] = p(x; 1)), the latter term of 3 is equal to zero, which gives us
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1.2 Equation HIPA-2

In this equation, the term Eges: x, [V(2(X;; 5%, I1))] seems like a typo. It should be Egest x, [V(j1(X;; S5, 11))].
The first question you might have with this equation is “Why do we need an expectation over a pa-
rameter, V?” One must know that V(i(X;; S 1)) varies across different values of X;. This is because
V((X;; St 1)) can be interpreted as V(i (X;|I(X;;11))), and thus the variance depends on the leaf I(X;; IT)
and the estimation set, S*®. We take X; and II as given in V(i (X;|I(X;;1I))), and then take the expectation
of it across different X; values given II. We will have more discussions about Egest x,[V(i(X;; 5 1I))] in

the next section. For now, we must show that
o Egy.se | (%= BOGTD)? = 2] = B 206 1)

o —Ey, gest [(ﬂ(xi;sest,n) - M(Xi;H))Q} = —Egesr x, [V((X3; S, 1))

— To add a little on the above equation, the honest approach plays a key role in applying the
definition. The unbiasedness of i is not guaranteed when the same sample is used for both training
IT and estimating for each leaf. That is, E[i(X;; S, II)] = u(X;; 1) due to the fact that S and

IT are independent

The second equality is direct from the definition of variance. For the first equality,
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1.3 Equation HIPA-3

. 2
E(p?(x;10)) = p%(z; S, 1) — % is a direct result of V(X) = E(X?) — [E(X)]? for any random

variable with finite variance - applying the rule to i will give the desired result.

1.4 Equation HIPA-4

We want to prove
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Equation 5 requires some extra illustration. To begin with, the MSE is defined as equation 6 since
Athey and Imbens (2016) uses an adjusted MSE, which is equal to the conventional MSE subtracted by
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Recall that ji(X;; S, I1))?’s are equal within the same leaf, and the estimation /i is made by the sample

mean of outcomes in each leaf from the training sample. Let Il = {l1, b, ..., Ly} with U;ﬂ?) l; = X. Also,

let u, (S) = ﬁ Zielj Yi

Thus,
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Applying the result above to equation 7 results in equation 5.

2 Honest Inference for Treatment Effects

2.1 Equation HITE-1

In this equation, we suspect there are multiple typos; our revised version is as below:
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Letting II= {ll, lg, ey l#(n)},
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where I(i € lg) is equal to 1 if 7 € [, and 0 otherwise; and #(l)" is the number of test samples that fall
into the leaf (Ii). In plain words, this means that ji(X;; S*, II) is the sample mean of the test samples in the
leaf where i belongs.

Since
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it suffices to show
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Slightly abusing the notation, let fi(lx; S*",IT) denote fi(lx; S, 1) for an individual that falls into leaf l.
a(ly; Ste T0) is also defined similarly.
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2.2 Equation HITE-2

The derivation in section 2.1 to 7 under the fact that

FEgte [’TZ|Z €St e l(m,H)] ESte[ (.’IJ Ste )]
gives us the result directly.

Why MSE,, not MSE,?

This is puzzling. MSE, in the orthodox definition, is a function of random variables.

That is,
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Here, both Y; and Y; are random variables.
The difference between 7; and Y; is that the former is unobservable. In that aspect, 7; is similar to a
parameter, although it is a random variable defined as Y;(1) — Y;(0). Our guess about the authors’ intention

is that they used the term MSE, instead of MSE, to acknowledge the unobservability of ;.



e Technically speaking, we can ask if below equation holds without taking the expectation

1
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Recall the definition of 7(z;S,1I) = (1, z;S,1I) — (0, 2; S, II). Now we can explicitly see that the
analogous equality of (14) to 7 does not hold without the expectation. While the estimator /i is defined
directly with Y;, the estimator 7 is not defined with 7;. Hence the fact Egee[r;|i € S :i € I(x,11)] =

Egee[7(z; S, )] plays a critical role in keeping MSE, an unbiased estimator of MSE;.
A Appendix: Typos

e (p.10) —EMSE,(II) = E[72(X;; II)] — Egest x, [V(72(X;; S 10))]

— —EMSET (H) = E[TQ (X“ H)] — VSe“,Xi [%(X“ H, SeSt)]
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