Additional Explanations for Athey and Imbens (2016)

Wooyong Park and Jeongwoo Yang

May 28, 2025

Some equalities in Athey and Imbens (2016) are challenging to understand at a single glance. In this guide, I add some comments for certain equations and properties to ease the comprehension.

Table of Equations

No.	Equation
HIPA-1	$-\mathrm{EMSE}_{\mu}(\Pi) = -\mathbb{E}_{(Y_i, X_i), S^{est}} \left[(Y_i - \mu(X_i; \Pi))^2 - Y_i^2 \right] - \mathbb{E}_{X_i, S^{est}} \left[(\hat{\mu}(X_i; S^{est}, \Pi) - \mu(X_i; \Pi))^2 \right]$
HIPA-2	$-\mathbb{E}_{(Y_i,X_i),S^{est}}\left[(Y_i - \mu(X_i;\Pi))^2 - Y_i^2\right] - \mathbb{E}_{X_i,S^{est}}\left[(\hat{\mu}(X_i;S^{est},\Pi) - \mu(X_i;\Pi))^2\right] = \mathbb{E}_{X_i}[\mu^2(X_i;\Pi)] - \mathbb{E}_{S^{est},X_i}[\mathbb{V}(\hat{\mu}^2(X_i;S^{est},\Pi))]$
HIPA-3	$\hat{\mathbb{E}}(\mu^2(x;\Pi)) = \hat{\mu}^2(x; S^{tr}, \Pi) - \frac{S_{S^{tr}}^2(l(x;\Pi))}{N^{tr}(l(x;\Pi))}$
HIPA-4	$-MSE_{\mu}(S^{tr}, S^{tr}, \Pi) = \frac{1}{N^{tr}} \sum_{i \in S^{tr}} \hat{\mu}^{2}(X_{i}; S^{tr}, \Pi)$
HITE-1	$MSE_{\mu}(S^{te}, S^{tr}, \Pi) = -\frac{1}{N^{tr}} \sum_{i \in S^{te}} \hat{\mu}(X_i; S^{te}, \Pi) \cdot \hat{\mu}(X_i; S^{tr}, \Pi) + \frac{1}{N^{tr}} \sum_{i \in S} \hat{\mu}^2(X_i; S^{tr}, \Pi)$
HITE-2	$\hat{MSE}_{\tau}(S^{te}, S^{tr}, \Pi) = -\frac{1}{Ntr} \sum_{i \in S^{te}} \hat{\tau}(X_i; S^{te}, \Pi) \cdot \hat{\tau}(X_i; S^{tr}, \Pi) + \frac{1}{Ntr} \sum_{i \in S^{te}} \hat{\tau}^2(X_i; S^{tr}, \Pi)$

Contents

1 Honest Splitting		
	1.1 Equation HIPA-1	2
	1.2 Equation HIPA-2	3
	1.3 Equation HIPA-3	3
	1.4 Equation HIPA-4	3
2	Honest Inference for Treatment Effects	4
	2.1 Equation HITE-1	4
	2.2 Equation HITE-2	5
\mathbf{A}	Appendix: Typos	6

1 Honest Splitting

1.1 Equation HIPA-1

By definition,

$$EMSE_{\mu}(\Pi) \equiv \mathbb{E}_{S^{te}, S^{est}} \left[\frac{1}{N^{te}} \sum_{i \in S^{te}} \left\{ (Y_i - \hat{\mu}(X_i; S^{est}, \Pi))^2 - Y_i^2 \right\} \right]$$
 (1)

Then,

$$\begin{split} & \operatorname{EMSE}_{\mu}(\Pi) = \mathbb{E}_{S^{te},S^{est}} \left[\frac{1}{N^{te}} \sum_{i \in S^{te}} \left\{ Y_{i}^{2} - 2\hat{\mu}(X_{i};S^{est},\Pi)Y_{i} + \hat{\mu}^{2}(X_{i};S^{est},\Pi) - Y_{i}^{2} \right\} \right] \\ & = \mathbb{E}_{S^{te}} \left[\frac{1}{N^{te}} \sum_{i \in S^{te}} \left\{ Y_{i}^{2} - 2\mu(X_{i};\Pi)Y_{i} + \mu^{2}(X_{i};\Pi) - Y_{i}^{2} \right\} \right] \\ & + \mathbb{E}_{S^{te},S^{est}} \left[\frac{1}{N^{te}} \sum_{i \in S^{te}} \left\{ 2Y_{i}(\mu(X_{i};\Pi) - \hat{\mu}(X_{i};S^{est},\Pi)) \right\} \right] \\ & + \mathbb{E}_{S^{te},S^{est}} \left[\frac{1}{N^{te}} \sum_{i \in S^{te}} \left\{ \hat{\mu}^{2}(X_{i};S^{est},\Pi) - \mu^{2}(X_{i};\Pi) \right\} \right] \\ & = \mathbb{E}_{S^{te}} \left[\frac{1}{N^{te}} \sum_{i \in S^{te}} \left\{ \left(Y_{i} - \mu(X_{i};\Pi) \right)^{2} - Y_{i}^{2} \right\} \right] \\ & + \mathbb{E}_{S^{te},S^{est}} \left[2Y_{i} \cdot \mathbb{E}_{S^{te},S^{est}} \left[\frac{1}{N^{te}} \sum_{i \in S^{te}} \left(\mu(X_{i};\Pi) - \hat{\mu}(X_{i};S^{est},\Pi) \right) | Y_{i}; i \in S^{te} \right] \right] \\ & + \mathbb{E}_{S^{te},S^{est}} \left[\frac{1}{N^{te}} \sum_{i \in S^{te}} \left\{ \left(\hat{\mu}(X_{i};S^{est},\Pi) - \mu(X_{i};\Pi) \right)^{2} \right\} \right] + 2\mu(X_{i};\Pi) \mathbb{E}_{S^{te},S^{est}} \left[\hat{\mu}(X_{i};S^{est},\Pi) - \mu(X_{i};\Pi) \right] \end{aligned} \tag{3}$$

In 2, however,

$$\mathbb{E}_{S^{te},S^{est}} \left[\frac{1}{N^{te}} \sum_{i \in S^{te}} \left(\mu(X_i; \Pi) - \hat{\mu}(X_i; S^{est}, \Pi) \right) | Y_i; i \in S^{te} \right]$$

$$= \mathbb{E}_{S^{te},S^{est}} \left[\frac{1}{N^{te}} \sum_{i \in S^{te}} \left(\mu(X_i; \Pi) - \hat{\mu}(X_i; S^{est}, \Pi) \right) \right] = 0$$

since the prediction $\hat{\mu}$ is made independently of the test set and $\hat{\mu}$ is an unbiased estimator of μ . For the same reason($\mathbb{E}_S[\hat{\mu}(x; S, \Pi)] = \mu(x; \Pi)$), the latter term of 3 is equal to zero, which gives us

$$EMSE_{\mu}(\Pi) = \mathbb{E}_{(Y_i, X_i), S^{est}} \left[(Y_i - \mu(X_i; \Pi))^2 - Y_i^2 \right] + \mathbb{E}_{X_i, S^{est}} \left[(\hat{\mu}(X_i; S^{est}, \Pi) - \mu(X_i; \Pi))^2 \right]$$
(4)

1.2 Equation HIPA-2

In this equation, the term $\mathbb{E}_{S^{est},X_i}[\mathbb{V}(\hat{\mu}^2(X_i;S^{est},\Pi))]$ seems like a typo. It should be $\mathbb{E}_{S^{est},X_i}[\mathbb{V}(\hat{\mu}(X_i;S^{est},\Pi))]$.

The first question you might have with this equation is "Why do we need an expectation over a parameter, \mathbb{V} ?" One must know that $\mathbb{V}(\hat{\mu}(X_i; S^{est}, \Pi))$ varies across different values of X_i . This is because $\mathbb{V}(\hat{\mu}(X_i; S^{est}, \Pi))$ can be interpreted as $\mathbb{V}(\hat{\mu}(X_i|l(X_i;\Pi)))$, and thus the variance depends on the leaf $l(X_i;\Pi)$ and the estimation set, S^{te} . We take X_i and Π as given in $\mathbb{V}(\hat{\mu}(X_i|l(X_i;\Pi)))$, and then take the expectation of it across different X_i values given Π . We will have more discussions about $\mathbb{E}_{S^{est},X_i}[\mathbb{V}(\hat{\mu}(X_i;S^{est},\Pi))]$ in the next section. For now, we must show that

•
$$-\mathbb{E}_{(Y_i, X_i), S^{est}} \left[(Y_i - \mu(X_i; \Pi))^2 - Y_i^2 \right] = \mathbb{E}_{X_i} [\mu^2(X_i; \Pi)]$$

$$\bullet \ -\mathbb{E}_{X_i,S^{est}}\bigg[(\hat{\mu}(X_i;S^{est},\Pi)-\mu(X_i;\Pi))^2\bigg] = -\mathbb{E}_{S^{est},X_i}[\mathbb{V}(\hat{\mu}(X_i;S^{est},\Pi))]$$

- To add a little on the above equation, the honest approach plays a key role in applying the definition. The unbiasedness of $\hat{\mu}$ is not guaranteed when the same sample is used for both training Π and estimating for each leaf. That is, $\mathbb{E}[\hat{\mu}(X_i; \mathcal{S}^{\text{est}}, \Pi)] = \mu(X_i; \Pi)$ due to the fact that \mathcal{S}^{est} and Π are independent

The second equality is direct from the definition of variance. For the first equality,

$$\begin{split} -\mathbb{E}_{(Y_i,X_i),S^{est}}\bigg[(Y_i - \mu(X_i;\Pi))^2 - Y_i^2 \bigg] &= -\mathbb{E}_{(Y_i,X_i)} \bigg[Y_i^2 - 2Y_i \cdot \mu(X_i;\Pi) + \mu^2(X_i;\Pi) - Y_i^2 \bigg] \\ &= -2\mathbb{E}_{(Y_i,X_i)} \bigg[\mu(X_i;\Pi) \mathbb{E}_{S^{est}} [Y_i | l(X_i;\Pi)] \bigg] + \mathbb{E}_{(Y_i,X_i)} [\mu^2(X_i;\Pi)] \\ &= -2\mathbb{E}_{X_i} \bigg[\mu^2(X_i;\Pi) \bigg] + \mathbb{E}_{X_i} \bigg[\mu^2(X_i;\Pi) \bigg] \\ &= -\mathbb{E}_{X_i} \bigg[\mu^2(X_i;\Pi) \bigg] \end{split}$$

1.3 Equation HIPA-3

 $\hat{\mathbb{E}}(\mu^2(x;\Pi)) = \hat{\mu}^2(x;S^{tr},\Pi) - \frac{S_{str}^2(l(x;\Pi))}{N^{tr}(l(x;\Pi))}$ is a direct result of $\mathbb{V}(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2$ for any random variable with finite variance - applying the rule to $\hat{\mu}$ will give the desired result.

1.4 Equation HIPA-4

We want to prove

$$-\text{MSE}_{\mu}(S^{tr}, S^{tr}, \Pi) = \frac{1}{N^{tr}} \sum_{i \in S^{tr}} \hat{\mu}^2(X_i; S^{tr}, \Pi)$$
 (5)

Equation 5 requires some extra illustration. To begin with, the MSE is defined as equation 6 since Athey and Imbens (2016) uses an adjusted MSE, which is equal to the conventional MSE subtracted by $\frac{1}{\#(S)} \sum_{i \in S} Y_i^2$.

$$-\text{MSE}_{\mu}(S^{tr}, S^{tr}, \Pi) \equiv -\frac{1}{N^{tr}} \sum_{i \in S^{tr}} \left\{ (Y_i - \hat{\mu}(X_i; S^{tr}, \Pi))^2 - Y_i^2 \right\}$$

$$= -\frac{1}{N^{tr}} \sum_{i \in S^{tr}} \left\{ Y_i^2 - Y_i^2 - 2\hat{\mu}(X_i; S^{tr}, \Pi)Y_i + \hat{\mu}^2 \right\}$$

$$= \frac{1}{N^{tr}} \sum_{i \in S^{tr}} \left\{ 2\hat{\mu}(X_i; S^{tr}, \Pi)Y_i - \hat{\mu}^2(X_i; S^{tr}, \Pi) \right\}$$
(7)

Recall that $\hat{\mu}(X_i; S^{tr}, \Pi))^2$'s are equal within the same leaf, and the estimation $\hat{\mu}$ is made by the sample mean of outcomes in each leaf from the training sample. Let $\Pi = \{l_1, l_2, \dots, l_{\#(\Pi)}\}$ with $\bigcup_{j=1}^{\#(\Pi)} l_j = \mathbb{X}$. Also, let $\hat{\mu}_{l_j}(S^{tr}) = \frac{1}{N^{l_j}} \sum_{i \in l_j} Y_i$

Thus

$$\frac{1}{N^{tr}} \sum_{i \in S^{tr}} \hat{\mu}(X_i; S^{tr}, \Pi) Y_i = \frac{1}{N^{tr}} \sum_{j=1}^{\#(\Pi)} N^{l_j} \cdot \hat{\mu}_{l_j}^2(S^{tr})$$
 (8)

$$= \frac{1}{N^{tr}} \sum_{i \in S^{tr}} \hat{\mu}^2(X_i; S^{tr}, \Pi) \tag{9}$$

Applying the result above to equation 7 results in equation 5.

2 Honest Inference for Treatment Effects

2.1 Equation HITE-1

In this equation, we suspect there are multiple typos; our revised version is as below:

$$MSE_{\mu}(S^{te}, S^{tr}, \Pi) = -\frac{1}{N^{te}} \sum_{i \in S^{te}} \hat{\mu}(X_i; S^{te}, \Pi) \cdot \hat{\mu}(X_i; S^{tr}, \Pi) + \frac{1}{N^{te}} \sum_{i \in S^{te}} \hat{\mu}^2(X_i; S^{tr}, \Pi)$$
(10)

Letting $\Pi = \{l_1, l_2, \dots, l_{\#(\Pi)}\},\$

$$\hat{\mu}(X_i; S^{te}, \Pi) = \sum_{k=1}^{\#(\Pi)} \mathbb{I}(i \in l_k) \frac{1}{\#(l_k)^{te}} \sum_{j \in l_k; S^{te}} Y_j$$
(11)

where $\mathbb{I}(i \in l_k)$ is equal to 1 if $i \in l_k$ and 0 otherwise; and $\#(l_k)^{te}$ is the number of test samples that fall into the leaf (l_k) . In plain words, this means that $\hat{\mu}(X_i; S^{te}, \Pi)$ is the sample mean of the test samples in the leaf where i belongs.

Since

$$MSE_{\mu}(S^{te}, S^{tr}, \Pi) \equiv \frac{1}{\#(S^{te})} \sum_{i \in S^{te}} \left\{ (Y_i - \hat{\mu}(X_i; S^{tr}, \Pi))^2 - Y_i^2 \right\}$$
$$= \frac{1}{\#(S^{te})} \sum_{i \in S^{te}} \left\{ -2\hat{\mu}(X_i; S^{tr}, \Pi)Y_i + \hat{\mu}^2(X_i; S^{tr}, \Pi) \right\}$$

it suffices to show

$$\frac{1}{\#(S^{te})} \sum_{i \in S^{te}} \left\{ -2\hat{\mu}(X_i; S^{tr}, \Pi) Y_i \right\} = -\frac{2}{\#(S^{te})} \sum_{i \in S^{te}} \hat{\mu}(X_i; S^{te}, \Pi) \cdot \hat{\mu}(X_i; S^{tr}, \Pi)$$
(12)

Slightly abusing the notation, let $\hat{\mu}(l_k; S^{tr}, \Pi)$ denote $\hat{\mu}(l_k; S^{tr}, \Pi)$ for an individual that falls into leaf l_k . $\hat{\mu}(l_k; S^{te}, \Pi)$ is also defined similarly.

$$\sum_{i \in S^{te}} \left\{ -2\hat{\mu}(X_i; S^{tr}, \Pi) Y_i \right\} = \sum_{k=1}^{\#(\Pi)} \left\{ \sum_{i \in l_k} -2\hat{\mu}(X_i; S^{tr}, \Pi) Y_i \right\}$$
 (13)

$$= \sum_{k=1}^{\#(\Pi)} \left\{ -2\hat{\mu}(l_k, S^{tr}, \Pi) \cdot \#(l_k)^{te} \sum_{i \in l_k} \frac{1}{\#(l_k)^{te}} Y_i \right\}$$
 (14)

$$= \sum_{k=1}^{\#(\Pi)} \left\{ -2\hat{\mu}(l_k, S^{tr}, \Pi) \cdot \#(l_k)^{te} \cdot \hat{\mu}(l_k; S^{te}, \Pi) \right\}$$
 (15)

$$= -2\sum_{i \in S^{te}} \left\{ \hat{\mu}(X_i; S^{tr}, \Pi) \cdot \hat{\mu}(X_i; S^{te}, \Pi) \right\}$$

$$\tag{16}$$

2.2 Equation HITE-2

The derivation in section 2.1 to $\hat{\tau}$ under the fact that

$$E_{S^{te}}[\tau_i|i \in S^{te}: i \in l(x,\Pi)] = E_{S^{te}}[\hat{\tau}(x;S^{te},\Pi)]$$

gives us the result directly.

Why $\hat{\text{MSE}}_{\tau}$, not $\hat{\text{MSE}}_{\tau}$?

This is puzzling. MSE, in the orthodox definition, is a function of random variables. That is,

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Here, both Y_i and \hat{Y}_i are random variables.

The difference between τ_i and Y_i is that the former is unobservable. In that aspect, τ_i is similar to a parameter, although it is a random variable defined as $Y_i(1) - Y_i(0)$. Our guess about the authors' intention is that they used the term $M\hat{S}E_{\tau}$ instead of MSE_{τ} to acknowledge the unobservability of τ_i .

• Technically speaking, we can ask if below equation holds without taking the expectation

$$\sum_{i \in l_k} \frac{1}{\#(l_k)^{\text{te}}} \tau_i = \hat{\tau}(l_k; \mathcal{S}^{\text{te}}, \Pi)$$

Recall the definition of $\hat{\tau}(x; \mathcal{S}, \Pi) = \hat{\mu}(1, x; \mathcal{S}, \Pi) - \hat{\mu}(0, x; \mathcal{S}, \Pi)$. Now we can explicitly see that the analogous equality of (14) to τ does not hold without the expectation. While the estimator $\hat{\mu}$ is defined directly with Y_i , the estimator $\hat{\tau}$ is not defined with τ_i . Hence the fact $E_{S^{te}}[\tau_i|i \in S^{te}: i \in l(x,\Pi)] = E_{S^{te}}[\hat{\tau}(x; S^{te}, \Pi)]$ plays a critical role in keeping $M\hat{S}E_{\tau}$ an unbiased estimator of MSE_{τ} .

A Appendix: Typos

• (p.10)
$$-\text{EMSE}_{\tau}(\Pi) = \mathbb{E}[\tau^{2}(X_{i};\Pi)] - \mathbb{E}_{\mathcal{S}^{\text{est}},X_{i}}[\mathbb{V}(\hat{\tau}^{2}(X_{i};\mathcal{S}^{\text{est}},\Pi))]$$

 $\rightarrow -\text{EMSE}_{\tau}(\Pi) = \mathbb{E}[\tau^{2}(X_{i};\Pi)] - \mathbb{V}_{\mathcal{S}^{\text{est}},X_{i}}[\hat{\tau}(X_{i};\Pi,\mathcal{S}^{\text{est}})]$

References

Athey, Susan and Guido Imbens (2016). "Recursive partitioning for heterogeneous causal effects". In: *Proceedings of the National Academy of Sciences* 113.27, pp. 7353–7360.